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ABSTRACT

The renewal function is a basic tool used in many probabilistic models
I S

and sequential analysis. Based on a random sample of size n, a nonpara-

metric estimator of the renewal function is introduced. Asymptotic properties

of the estimator such as the almost sure consistency and local asymptotic

normality are developed. A discussion of an application of the estimator is

also provided.
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SIGNIFICANCE AND EXPLANATION

Let X1 , X2 , ... be identically and independently distributed with

distribution function F. With Sk = X1 +...+ Xk, let F(k)(t) - P(Sk 4 t)

be the k-fold convolution of F for k ) 1. The renewal function H is

defined by

H(t) = kl F(k)(t)

for t > 0.

The renewal function is a basic tool used in sequential analysis and used

in probabilistic models arising in areas such as reliability theory, inventory

theory, continuous sampling plans and warranty analysis. Use of the renewal

function is becoming widespread as efficient computational techniques, which

can be applied when the failure distribution is known, become available. It

is surprising that, especially for small sample sizes, estimation of the key

function based on available data has not been addressed directly.

Based on a random sample of size n, a nonparametric estimator of the

renewal function is introduced. Various statistical properties of the

estimator, such as consistency and asymptotic normality, are developed. A

discussion of an application of the estimator to warranty analysis is also

provided.

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the author of this report.V!



NONPARAMETRIC RENEWAL FUNCTION ESTIMATION

Edward W. Frees

41. Introduction

Let X1 , X2 , ... be identically and independently distributed random varl-

ables with distribution function F. Assume that F has positive mean p and

finite variance 02. With Sk = XI + ... + Xk, let F(k)(t) - P(Sk 4 t) be the

k-fold convolution of F for k)l. The renewal function H is defined by

H(t) F (k) (1.1)

for t>O. The renewal function can be thought of as the expected number of

renewals in [O,t], where the number of renewals in [O,t] is denoted by N(t) and

defined by

N(t) - lk)1 I(Sk t). (1.2)

Here I(.) is the indicator function of a set. When the observations Xi are non-

negative, an equivalent definition for the number of renewals in [0,t] is

N(t) - {sup k: Sk ( t}. The renewal function plays an important role In many

probabilistic models (cf., Feller, 1971 and Karlin and Taylor, 1975) and sequen

tial analysis (cf., Woodroofe, 1982).

Most classical estimators of the renewal function are based on the assump-

tion of a parametric form for F, typically an exponential or Gamma distribution.

See Cox and Lewis (1966) for an early treatment of the statistical analysis of

renewal processes. Most nonparametric estimators of H(t) are based on a reali-

zation of the renewal process .1 and on theorems which yield simple approx-

imations of H(t) for asymptotically large values of time t. For example, sup-

pose that the nonnegative values Xi are recorded and that F has an arithmetic

distribution. Recall that a distribution function is said to be arithmetic if

its support is on {O, + d, + 2d, ...} for some constant d. Then, the result

tim H(t) - t/P = (a2 + P - 02)/(2a 2

t +=

Sponsored by the United States Army under Contract No. DAA(29-80-C-0041.
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(cf.. Feller, 1968, p. 341) has suggested the use of the estimator

A2 2 2
H(t) t/li + (a + U - 2 )/(20) (1.3)

where P and a 2 are estimators of P and a based on the data recorded up to time

t. See Yang (1983) for an application of H(t) to continuous sampling plans.

Another well-known example is a functional central limit theorem for N(t) given

by Billingsley (1968, Theorem 17.3). Here the limits are for t approaching -.

In this paper, estimators of H(t) for a fixed time t are based on a random

sample of size n, Xl,X 2,...,Xn. Estimation of the distribution function F and

linear functionals of F are problems that have been thoroughly investigated in

the literature (cf., Serfling, 1980, chapters 2 and 6). Viewing H(t) defined in

(1.1) as merely the Infinite sum of convolutions of F, it seems natural to esti-

mate H(t) based on a sum of estimators of the convolutions of F. As one would

suspect, even though estimators of the type in (1.3) are based on recorded

observations, they do not perform well for small (relative to p) times t. This

was pointed out by Frees (1984). In that study the author introduced several

estimators, both parametric and nonparametric, of H(t) for a fixed time t based

on a random sample of size n. One nonparametric estimator performed particu-

larly well in the simulation portion of that study. A variation of that estima-

tor is now defined. Let {il,i 2 , ... ik} be a subset of size k of {1,2,...,n} and

let I be the sum over all (n) distinct combinations of {lXi2,...ikl. Then, an

unbiased estimator of F(k)(t) is

F(k)(t) _ (n)-1 [ I(x 1  + ... + X t). (1.4)
n k C k

Let m - m(n) be a positive integer depending on n such that men and mt- as nt-.

Then, a nonparametric estimator of the renewal function Is

m .. ... . * - , . | •. . -
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k(t) = m F(k)(t). (1.5)

The advantages of introducing the design parameter m are discussed in 55.

The estimator of F(k)(t), F(k)(t), is a U-statistic and thus it is easy to
n

establish that for each k~l and for each t>O that

F(k)(t) + F(k) (t) a.s.
n

However, the almost sure (a.s.) consistency of Hn(t) is surprisingly difficult

to establish. We do so in 52 by establishing that Hn(t) is a reverse martingale

* with respect to an appropriate sequence of sub a-fields plus some negligible

terms. Also in that section we prove a.s. uniform consistency, the Glivenko-

Cantelli property, when the uniformity is restricted to bounded subsets of the

positive real line. A counter-example is given which shows that a.s. consis-

tency cannot hold uniformly over all of the positive real line. In 53, the

asymptotic normality, when properly standardized, of Hn(t) is proved via the

projection technique popularized by Hajek (cf., Serfling, 1980, Chapter 9.2.5).

To keep potential applications for this estimator as broad as possible, we dis-

tinguish between the usual renewal theory assumptions of nonnegative observa-

tions and the more general framework which also permits negative observations.

The latter is the situation usually encountered in sequential analysis. In 54,

we prove the a.s. consistency of an estimator of the asymptotic variance. This

provides the important result of large sample interval estimates. We conclude

in 55 by commenting on applications and by providing an example in warranty

analysis.

42. Almost Sure Consistency

Let a c R and g be a real valued function defined on R+ = 10,) such that

n t gahi d(ecki ka F(k)(u)) < (2.1)

. In this section we establish the following result.
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Theorem 2.1

Suppose that (2.1) holds. Then,

CO- m (k) aFk

lim ga(u) d(kl Fk (u)) = fo ga(u) d(k ka F(k)(u)) a.s. (2.2)
o a n o a (1k

In 14 and 15, we give applications where a'O. To provide motivation for Theorem

2.1, we consider the following corollary for the case a-0.

Corollary 2.1

Suppose g is a function defined on R+ such that

r jg(u)j dH(u) <

Then,

lir g(u) dHn(u) - f g(u) dH(u) a.s.

Corollary 2.1 indicates that the sequence of random measures associated

with the sequence fH, Rn, n>} possess a type of ergodic property. The state-

ment of Corollary 2.1 is similar in flavor to the statement of the key renewal

theorem of Smith (see 1958, (1.3)). Some of the applications of Smith's key

renewal theorem are also present in the estimation context of Corollary 2.1.

For example, since H(t) < - for each t0 when P is positive and a2 is finite, we

may let g(u) - I(ut) to get the following

Corollary 2.2.

Suppose F has positive mean v and finite variance o . Then, for each t)O,

Hn(t) + H(t) a.s.

Corollary 2.1, together with some results on uniformly convergent measures due

to Rao (1962), is also used to prove



Theorem 2.2.

2
Suppose F has positive mean u and finite variance a Then, for each t)O,

SUP IHn(u) - H(u)J * 0 a.s.
uC[O,t]

Remarks: Note that Theorem 2.2 does not require that the support of F be on R
+

and also holds for both arithmetic and nonaritheetic distributions. The theorem

is a Glivenko-Cantelli type result and Is important in practice. A minor draw-

back of the result is that the supremum extends only over bounded Intervals and

not over all of R+. That an extension of the result to R+ does not hold in gen-

eral is given by the following

Example 2.1.

Let Ix jinI be a random sample with d.f. F, V>O. Define

Xnn = max{Xl,...,Xn}. Suppose F is such that for some >0 and for sufficiently

large N, we have Xnn > P+c a.s. for all n>N. Since by the elementary renewal

theorem, limt, H(t)/t = I/u, we have for all noN,

sup+ IHn(t) - H(t)l ) jH(n X) - Hn(n Xn)I
teR

" jH(n Xnn) - ml - n(Xnn/u - m/n) + a.s.*

The remainder of the section Is devoted to the proof of Theorems 2.1 and

2.2. The technique is to show that fo g(u) d( klka F (k)(u)) is a reverse mar-

tingale plus negligible terms. Reverse martingales are a natural tool in this

context if we note that F(k)(t) is a U-statistic. The Idea of applying reverse
n

martingales to U-statistics is due to Berk (1966). An application of Doob's

(reverse) martingale convergence theorem will then establish Theorem 2.1. Let

{Xln, X2n, .. , X nn} be the order statistics associated with {XI, X2, ..., XnI.

We use Gn - O(Xn, ... , X nn' Xn+1 , Xn+2, ... ), n)1, to define the sequence of
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nonincreasing sub a-fields which are implicitly used in all of the following

reverse martingales. We preface the proof of Theorem 2.1 with two lemmas.

Lemma 2.1

Let g ) be as defined in (2.1). Then, for each k1, 10 ga(u) dF(k)(u) is

a reverse martingale.

Proof: It is easy to see that r g8 (u) dF(k)(u) is Gn-measurable. Now, note

that (2.1) implies that ga (u) + 0 as u * -. Integration by parts yields

a a u) dF(k)(u) - ga(u) F(k)(u) 1o- f F(k)(u) dga(u)

- F (k)(u) dga(U). (2.3)

An application of Fubini's Theorem using (2.1) establishes that f ga(u) dF(k)(u)

is integrable. Since {F(k)(u), Gnl is a reverse martingale we have

E(F (k)(u)IG ) (k) ( a.s. for each u>O. Thus
n f~o yn+l)

E(I gW9(u) dF (k) (u)IG.) -f E(F (k) (u)IG~ 1  dg (u)

- - +l) (u) dga(u) g fga(u) dF(k)(u) a.s.*

Lemma 2.2

Let ga( ) be as defined in (2.1). Then,

RM (a) = o (u) d(jk=Ika F(k)(u)) + k>nka f g(u) dI(SkCu)

- f g d(amgika F(k)(u))

is a zero mean reverse martingale.

"o.I
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Proof:

The proof Is similar to Lemma 2.1 if we note that

F (k) (u) k~n

E(l(S k u)IG)d - I n ".
I(Sk 4u) k>n

Proof of Theorem 2.1:

To prove (2.2), it is sufficient to show

urn g g(u) d( I k a F(k)(u)) - foo g (u) <( ka F (k)(W)as (2.4)

To see this, by Fatou's Lemma and similarly to (2.3), we have

n a W(k
lr fm  g (u) d( I k F''(u)) -Jgu) d(Im 1k' (k (u))

0o a k-i f: ga km l

lim 9 f k) (u) d( g (01))-0
k-m+1

To prove (2.4), we use Lemma 2.2 and Doob's (reverse) martingale convergence

theorem. Thus, there exists a random variable Z such that lim RMn Z a.s.

and lim EIRM n - Z- 0. From Fatou' s Lemma,

0 - lm EIRM n-Z )- lim E(RM n- Z) > E lim (RM n- Z) . 0

and thus EZO0. Further

Z- urn f'( nkaFW() (gkaF()() (g()
nl au fo an 0 ~k-1
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m

lr k a C(F(k)(u)  F (k ) (u ) ) d(-g (u) )
k-i 0u n Fau)d(~C)

k a Irm (F(nk ) () - F(k ) (u)) d(-g (u)) - 0 a.s.
k-i

Since Z>0 a.s. and EZ-0, we have Z-0 a.s. This is sufficient for (2.4) and the

proof.*

Proof of Theorem 2.2:

Let A = {w: w~t and w Is a discontinuity point of H}. Since the set of

discontinuity points of F (k)() is countable for each k>1, A is countable and we

can let fail be some enumeration of A. Define g(u) - I (u - a). Since

fr g(u) dH(u) < H(t) < by Theorem 2.1 we have

m (F(k) (a -F(k) (a+-)) a - Ra 1 -))"

1>1 k. IiONl

Thus, without loss of generality, we may assume that H(u) is continuous for u~t.

The result is now immediate from Theorem 2.1 and Theorems 4.2 and 6.1 of Rao

(1962).*

53. Asymptotic Normality

Define

&r (C) - Cov(F (X-c) (t-(X 1 C + ... + X )), F(S-C)(t-(x + + X ))). (3.1)

In this section we prove the following result.
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Theorem 3.1

Suppose F is such that, for some 0 > 0,

f exp (-u) dF(u) < 1. (3.2)

Let m grow sufficiently quickly so that log n - o(m) and sufficiently slowly so

that m - o(nl/2). Then, for each t > 0

I-n (Hn(t) - H(t)) +D N(0, 2)

where

0* a rs rs(1).
r-1 s-il r

Remarks: Note that Theorem 3.1 holds for F both arithmetic and nonarithmetic.

Further, there is no requirement that X be a nonnegative random variable. The

-equirement (3.2) is needed to ensure that P(Sk < t) dies out sufficiently

quickly as k + -. Since P > 0, a sufficient condition for (j.2) is that the

moment generating function of X exists in a neighborhood of zero. However, such

strong moment conditions are not always necessary. Consider a random variable Z

whose distribution is defined by the probability density function, for some

6 > 0,

-3-6
f(z) K z I(z > 1)

where K is an appropriate constant. Then, Var(Z) is finite, (3.2) is easily

satisfied, and yet E Z 2+6 Co.
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Lslng W a3 the duration of a warranty, suppose we are Interested In eqL-

mating the expected number of renewals (or repLacements) by ttme W, H(W), or

more generally, we wish to estimate H(t) for t(W. Suppose we replace the l.i.d.

observations X, In the definition of Hn(t) (see (1.5)) by X1  = min(X W). A

little thought leads us to the conclusion that all the results of §2 through §4

remain valid with the provision that the time t under consideration is bounded

by W. This is important in commercial applications where typically the manufac-

turer of a product only has knowledge of the time to failure if it occurs before

expiration of the warranty.

In many situations the choice of the design parameters m and mi is dictated

by practical considerations, as in the example above. Theorem 3.1 gives some

theoretical guidelines for the choice of m. However, the convolution F(k)(t)

dies out exponentially (cf. (3.10)) as k approaches infinity, and typically m

can be small compared to the sample size. A similar argument can be made for

Mi. This is important since the amount of computations increases quickly as m

(or mi) increases.



ra' lod a warranty and W Is the duration of the warranty. Tn "is (eXampte, one

roasnahLe warranty duration ts the end oF the earLy faluLre period and thus we

,'.ive a point and interval estimate of H(20).

F(k)(2 0)=.494 Fre
From Table 1, the estimate is Hn( 2 0 ) = 10 .46194. Frees4= 105

HM4) compared this estimate with other estimators of' H(20) and Found It rea-

oi.=hte. To calculate the estimated variance of this estimator, from Table 2 we

h ave

2 r4 ^
- rs (I) = .75385.

n 'r,s=l rs

Thus, an approximate 95% interval estimate of M(20) is H105(20) + 2 a n/,'05

which is roughly .46 + .17 or (.29, .63).

TABLE I

Convolution estimates for failure of a unit
of electronic ground support equipment.

k 1 2 3 4 5 6 7 8

F(k) (2
0 )  .35238 .09048 .01684 .00208 .00016 0 0 0

105

TABLE 2

Covariance estimates for failtre of a unit of
electronic ground support equipment

S(1)

rs

r/s 1 2 3 4

1 .22821 .05860 .01091 .00135

.01733 .n0490 .00061

3 .00395 .30048

4 .00037

. . . _ f "... .- '.. .. . . .: . . ....?,. .. . .• . ,,'.... .- ..
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etric estimation of this key function based on the available data. The simula-

tion study of Frees (1984) showed that an estimator similar to Hn(t) performed

well for small (n < 30) sample sizes. An example in warranty analysis is given

below. The techniques of this paper may also be useful in sequential analysis.

For example, an important parameter in sequential estimation is the mean of the

renewal function,

P - ru dH(u),

see Woodroofe (1982). Defining pn u dF(k)(u), from Corollary 2.1 we

have that pn is an a.s. consistent estimator of p if p < -. Another example is

the expected value of the first passage time

T = inf{n > 1: Sn > 0}.

From, for example, Woodroofe (1982, Corollary 2.4) we have

E(r) - exp{k>l k- I P(Sk < 0)} when u > 0. Thus, by Theorem 2.1,

- exp{m k-I F(k ) (0)l is an a.s. consistent estimator of E(T). We intendTn = x I n

to explore other applications of nonparametric renewal function estimation in

sequential analysis in another paper.

To illustrate how to calculate the estimator, we used observations of the

time to failure of a unit of electronic ground support equipment which were pre-

viously used by the author (Frees, 1984). The data can also be found in Juran

and Gryna (1970, p. 171) and Kolb and Ross (1980, p. 170). In Graph 1 an esti-

mate of the failure rate curve is given which suggests an early failure rate of

about 20 hours. The estimate of the failure rate was based on Epanevicoch's

method. The calculations were done on a VAX 11/750 owned and operated by the

Department of Statistics at the University of Wisconsin-Madison. Now, it is not

unusual for the manufacturer of equipment to enter into an agreement to replace

the equipment for a certain length of time, say, W. This type of agreement is
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To prove (4.4), we first establish an analogue to Lemma 2.2. Let

R n 1 rs + I rs E{I(Sr 4 t) T(S rs - -r l) IGn}n
ns rs

r+s- 1 n r+s- 1>n

- Y. rs
r,s)l

It is easy to see that Rn is Gn-measurable and Integrable. Further, since j
E(E{I(S4t) I(Sr.s 1 - S 1  t)IGn}IG I)

- E(I(S rt) I(S r+s_ 1 - Sr_ 1  t)IGn+ 1) a.s.

and for r+s-1 4 n, E(I(Sr 'Ct) I(S r+s_1  t) JGn) = Ers a.s., Rn is a zero

mean reverse martingale. Now, as in the proof of Theorem 2.1, an application of

Doob's (reverse) martingale convergence theorem and repeated application of

Fatou's Lemma yields

lim rs +ss EM(Sn  t) I(Sr 1  S 1  t)IG)

n . r+s-14n r+s-l>n

- rs rs a.s.r,sl : 1 r

Thus, to complete the proof, we note that

lim Y E(I(S r 4 t) I(Sr+s- Sr_ ' t)IG) 0 a.s.
n-* r+s-1>n

and

-n rs =0 a.s.- s'
n- r+s- I <n rs rs rs

65. Concluding Remarks

The renewal function arises in a wide variety of applications of probabil-

Istic models such as in reliability theory, inventory theory and continuous sam-

pling plans. In this paper we have presented the asymptotic theory of nonparam-

. l. .:... '. . . ... ... - ..... . ... . .:'



a Xr,sumi Era (Y k F n (0) (4.3)

we have

lrn a 2 ,0 2  a.80

Remarks: For a general F', by Theorem 3 of Baum and Katz (1965), E 1X13 < is a

sufficient condition for (4.2). Further, from (3.10), it is easy to see that

(3.2) is sufficient for (4.2). Thus, we have

Corollary 4.1.

Assume that the conditions of Theorem 3.1 hold and let an2be defined as in

(4.3). Then,

frn/a (Hn(t) - H(t)) +D N(011)

U and thus, for a c (1/2,1),

lrn P(H (t) - z a t//fn 4H(t) 4 H (t) + zQ, a o/(-) -(x-

where za2Is the a/2 quantile of the standard normal distribution.

Proof of Theorem 4.1:

From Theorem 2.1, with a-i and ga(u) - (u~t), we have

Thus, we need only show that

mI A
~rs1ra Ei. ra au (4.4)

reEa a$

.S
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This result and Theorem 3.1 will immediately provide a confidence interval for

- 14(t).

Cr-I) (a-I)Let rs = E(F (t-X) - (t-X)). We wish to estimate

a - ). rs 'rs(1)

, ,r,s>Irs {E (F(r-l)(t-X) p(s-l) (t-X)) - F(r)(t) F(s(t)1

=r,s),l rs grs - (1r;l r F(r)(0))2 .

To define an estimator of rs' let {il,1i2,...,i 1+sI be a subset of {l,2,...,n},

not necessarily ordered. Let Ip denote the summation over all n1 permutations of

subsets of size r+s-I from {1,2,...,n}. An unbiased estimator of rs is

*rs'(n-r-s+l)!/n! Yp I(x + +... X C t)

I(x1 1 + X + + + x it). (4.1)

In this section, we prove the following result.

Theorem 4.1

Assume that

kII l k F(k(t) < . (4.2)

Let ml - ml(n) be a positive integer depending on n such that mlCn and mI + as

n + a. Then, with

*, . : . , . , ". . -. " ... .. . , , . . : T : :. . . . . . .• , . .. , . . .
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To prove (3.12), note that

n)- (s n-s

r c r-c

- ri s! (n-r)! (n-s)! {(r-c)! (s-c)! c! (n-r-s+c)! (n-1)!1 -

- A(n,r,s) (r) ( c! (n-r-s+l)! / (n-r-s+c)!.

Note that c! (n-s-r+l)! / (n-r-s+c)! (n-

l min(r, s)r sc-Ir (r) (s) = (r+s) sup A(n,r,s) C 1 + o(1), and

I rs(c) 4 F(r(t) F(s)(t). Thus,

mI (n VS ( ) E(c)

C o(n - ) sm F F e- () F {t) 1 0 -r

0n) m (EeeOX r4-s r+s
- n r,8=1 r n

by (3.10) and the fact that for $l1,

r+s r+s4,sml p  r o.

14. Interval Estimates

A local asymptotic normality result such as Theorem 3.1 Is appealing

because it gives Information about the rate of convergence of R(t) to H(t).

However, in applications it is also desirable to give interval estimates of

H(t). In this section we present an estimator of a2 and prove its almost sure

consistency. In the proof the reverse martingale technique of 52 is utilized.

. --

.o.

• /~~~~~~~. . . .. . . ]. . . . . . .. . . -. . . . . . - . . . . . . , . . - . ... . ... . -. ' - .--..- . - - / . , , . . .
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* Lemma 3.3

Under the assumptions and notation of Theorem 3.1,

m in (n)l1'r, (s) (fls) ( -rs (}.0
r, s-I r cI c r-c &rs( rs('l 0

Proof:

Sufficient for the proof IsI

- ~ 48)1 2 (s) n-) e(3.12)
r,-i r ci2C r-c gre(c) 0

and

4m (n (n)- r- rs) ~r 1 .(3.13)

To prove (3.13), by Lemma 3.2, we have

n (n)-1  (n-1) - ra - rs ((n-s)t (n-r)! {(nr-1)! (n-r-s+1)!F'-1 1)r r-1

rs (A(n,r,s) -1).

Thus, by Fatou's Lemma,

1imI (n (f)l (n-a) -rs) ()Ir,s r r-1 rs

rs (rs1) i ur sup IA(n,r,s) -1 I-0.r,s rrss
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Proof:

Recall the inequality (cf., Feller, 1968, p.54),

2w (n + 1/2)n n1/2 exp {-(n + 1/2) -1/2
4/n + 1/2)11l

< n1 < 12w (n + 1/2)1+2 exp{-(n + 1/2)1.

Thus,

A(n,r,s) (n -r + 1/2)'-r+1112 (n - i + 1/2)n-s+1/2 fl + om1
(n - 1/2 )n-1/2 (n - r - * + 3/2)f-r!+3/2

Define nj n-1/2 and n2 -n-r-s+3/2. Then,

A(n,r,s) (I (r-l)/n) (10 (r1)/n 2

(10 (r-s)/(fl-1+1/2))r 11 + (1)1.

Thus,

sup log A(n,r,s) 4Sup fa log(1 (r-l)/n 1)
r~s r's

+ n2 10g(0 + (r-1)/n2) + k log(1 + (r-s)/(n-r+1/2))) o(l)

-s~p -(r-1) + o(1) + (r-1) + o(1) -o(1).

Thus, 11. sup A(n,r,s) (1. The Inequality In the opposite direction
r,s

Is similar.*
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Thus, from (3.2),

i-n (H(t) -H*(t)) / J >D (k)

Or n e (EC-ex))m (1-E(e X )) - * 0

by an easy application of L'Hospital's rule since log n = o(m). Thus, suffi-

cient for the proof of the lemma is

(Hnt) - H* (t)) D O, 02)a (3.11)

To prove (3.11), from (3.5), define

Un= n-1 kml (F (k-1) (t-x)- F(k)(t)).

njj

Now unj ; J-1,...,n, n>I} Is a double array of random variables that are inde-

pendent within rows. Now E U = 0 and, by (3.6),
nj

n -1
Var( I Un1 ) = n r, rs r (1). Because of the strong moment conditions,j.1

It is easy to check that the usual uniform asymptotic negligibility and

Lindeberg conditions hold (cf., Serfling, 1980, $1.9.3).*

Lemma 3.2

Define A(n,r,s) = (n-r)! (n-s)! {(n-1)! (n-r-s+1)H}- 1 . If r-o(n 1/ 2) and

-o(n 1/2), then

lim sup A(n,r,s) = 1.
n @o rs

i, ,, i - - - -" -- -""-- -'- " ' " - " -" " "-'?"'-" -"...........................-'.-."..."-..-.."."...-...-..-..
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Hence, from (1.5) and (3.5),

(r) n

*COV(H (t R M- r ov(F (), On (-
n (t)) r,sm= (t), / (t-Xj))

" xr,:uai 5 Cov(Fnr(t), F (-l(t-X 1 ))

- 4 ,:- ri/n Mrs (). (3.8)

i Thus, from (3.6) - (3.8),

2 r
n E(H,(t) - H n(t)) - ntVar(H n(t)) + Var(H n(t)) - 2 Cov(H n(t), 1n(t))

-- ,. n -  o>€_>

i n 1 (:) (nr (c) - ra rs(1)J. (3.9)
r. c-I

We now present a series of lemmas which, when taken together, provide a

proof of Theorem 3.1.

Lemma 3.1

Under the assumptions and notation of Theorem 3.1,

On (Hn(t) - H(t)) D N(O, a2).

Proof:

By the Markov inequality, for 8>0, we have

* F(k)(t) - P(-6 Sk > -0 t) C e t (E e). (3.10)

;S

:-- ------ -- -------- ...-- t" ..... 3.-.LA.....M.db- ..-".-



Io1

E I( +X + Xb+.. b . . + Xb t)
1 2 r 1 2 a

-- _ F(r)(t) F)(t) = rs (c).

Thus,

ICov(F ) (t), F(S)(0))
n n

ni n E [I(Xl + + X 4 t) - F(rt)]

r E c c a a r

[I(Xb + ... + Xbs4 t) - i(s)(t)1}

/1 S

(- ll r s (n-5) c
r Lg (C (r-c) Crs(c)

since the number of distinct choices for two subsets of size r and s, respec-

tively, having exactly c elements in common is (n) (c ) ) Thus,n s c r-cn-

Var(Rn(t)) ( -r,sul (r) (,,a (r) r (c). (3.7)

* Cr)
To calculate Cov(Hn(t), H (t)), we first examine the covariance between Frn (t)

and F(s-1 )(t-X ). Now,

. Cov(Fnr (t), F ( -rXl)

n -
(n) (r_1 ) Cov(F (r - 1) (t-X F() 1 (t-Xl)W

- r/n r(1).
rs
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From the definition of F(k)(t) in (1.4), an easy calculation shows thatn

F( k )  n -'I(n-I (M-l) 7 (k)
E( n()Fl (n) F(_I Fkl(t-I I )  (t)}

- (k/n) F(k -l(t-XI) + (1-k/n) F(k)(t). (3.3)

Define a truncated version of H(t), H (t) = F(k)(t). We define the projec-
k-i

tion of Hn(t) on H*(t) by

n
1 (t) - I E(H (t) 1x) - (n-i) R (t). (3.4)
n J1 n

From (3.3), we have

.1 n m k1)RkH (t) -H (t) - I kFk (t-x (3.5)

'-- -' j-1 k-1

The idea of projecting Rn(t) onto the original independent observations Is

due to Hoeffding. Since H (t) is just the sum of n independent random varl-
n

ables, the usual theorems for double arrays of independent random variables are

used to obtain a limiting asymptotic distribution for H (t). We then show that

the moments of H n(t) - H n(t) are small in the appropriate sense to get an Iden-

tical asymptotic distribution for Rt(t)o

From (3.1) and (3.5), we have

Var(H (t)) n rs v(F ( t - ) , F (t-X))

-n r,M~l rs grs(1). (3.6)

To calculate Var(Hn(t)) we first examine the covariance between F(r)(t) and
n ) n

F(s) (t). Let {a1, a2, ... , I} and {b1 , b2 , ... , b.} be two subsets ofn,. 2n..Ir2

* {1, 2, ... , ni that have c 4 min(r,s) elements in common. Then,

0 .
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